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Abstract. The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 · 2MeOH are reported.
The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of FeIII ions. The magnetic
susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/kB = −27.5±0.5 K.
The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The
zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz.
The intra-molecular interactions of the FeIII ions are analyzed and the on-site anisotropy of the FeIII due
to the ligand-configuration is determined to d/kB = −0.633 ± 0.008 K.

PACS. 33.35.+r Electron resonance and relaxation – 36.40.-c Atomic and molecular clusters –
75.20.-g Diamagnetism, paramagnetism, and superparamagnetism – 75.75.+a Magnetic properties
of nanostructures

1 Introduction

Polynuclear metal complexes attract the interest for the
variety of new magnetic properties, for the new physics
involved and for the potential applications [1]. Molecular
ring-systems present an interesting subgroup of magnetic
molecular clusters, because their physical properties are
expected to show features of an infinite chain, especially
when the number of interacting spins increases [2]. The
magnetic properties of such nanoscopic molecules result
from the interplay of the dominating superexchange be-
tween the atomic spins, the dipolar coupling of the local
moments, and the on-site spin anisotropy arising from the
ligand configuration. Crystal lattices are often formed by
the clusters and allow the measurement of isotropic and
anisotropic magnetic properties of individual molecules on
macroscopic samples since the clusters remain magneti-
cally isolated. Information about the intra-molecular in-
teractions can be obtained by measurements of the static
magnetic susceptibility [3]. However, the magnetic suscep-
tibility is not very sensitive to anisotropic interactions
since it results from the thermal average of many oc-
cupied molecular eigenstates. It is possible to overcome
this problem by measurements of the magnetic moment
at low temperatures as a function of the applied mag-
netic field. The magnetization of the cyclic spin clus-
ter increases step-like due to field induced level-crossings
of the groundstate. The crossing of the levels can be
sensitively detected by cantilever torque magnetometry
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and yields quasi spectroscopic information of the rela-
tive energy and the zero-field splitting of the excited spin
states which cross the groundstate [4]. The method of-
ten relies on the assumption that the zero-field split-
ting of the spin states is determined by one parame-
ter DS , which is not necessarily true. Electron spin res-
onance (ESR) provides the direct approach to the zero-
field splitting of spin-cluster compounds. However, usu-
ally the zero-field splitting of coupled systems of magnetic
ions is large, so that the application of high frequencies
and large magnetic fields is necessary in order to detect
resonances. The groundstates of ferri/ferro-magnetically
coupled clusters have been successfully studied by means
of high-field/frequency ESR. Indeed the interpretation of
the spectra simplifies considerably when the Zeeman en-
ergy becomes larger than the zero-field splitting [5]. In
the case of the antiferromagnetically coupled spin clusters
with a spin zero groundstate the thermally excited spin
states have to be analyzed. This is complicated by the
fact that the spectra of these spin states overlap [6]. In
this paper we will show that detailed information about
the electronic structure of the hexanuclear cyclic iron(III)
cluster can be obtained by ESR even when the samples
are contaminated by an unknown magnetic species. We
report the magnetic properties of the spin cluster com-
pound [Fe6(bicine)6] LiClO4·2MeOH, which is abbrevi-
ated in the following as Fe6:bicine (bicine denotes N,N-
Bis(2-hydroxyethyl)glycine). Fe6:bicine is studied by mea-
surements of the static magnetic susceptibility and ESR
at 94 GHz.
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Fig. 1. a) View of the Fe6:bicine (SCHAKAL) along the 3̄
symmetry axis (H-atoms omitted). b) Detailed view of the co-
ordination of the Fe atom. The black dots indicate C-atoms.

2 Experimental details and results

Fe6:bicine was synthesized by Geisselmann [7]. Figure 1
shows a projection of the Fe6:bicine cluster. The molecular
point symmetry is 3̄.

The crystals form small green needles with a typical
length � 1 mm and a diameter � 0.3 mm. The hexagonal
unit cell contains two Fe6:bicine units as well as lithium,
perchlorate, methanol and water molecules (space group,
P63/m, a=13.8287 Å, c=18.0228 Å [7]. The FeIII ions are
bridged and magnetically coupled via two oxygen atoms
located inside (atom O(1)) and outside (atom O(2)) of
the iron ring. The molecular symmetry axis is parallel to
the c direction of the crystal lattice. Some structural para-
meters of the Fe6:bicine cluster are compared in Table 1
with those of the related Fe6tea6 cluster (Fe6:tea, tea:
triethanolaminate(3−)) which differs from the Fe6:bicine
cluster only by the atom O(4) [6,8]. O(4) is replaced
by two hydrogen atoms (compare Fig. 1). The magneto-
structural properties of the two molecules are discussed
and compared in Section 4. The static magnetic moment
of oriented single crystals and polycrystalline samples was
determined with a SQUID magnetometer (Quantum De-
sign, Magnetic Property Measurement System) for mag-
netic field strengths up to 5.5 T in the temperature range
2 to 300 K. The experimental results are shown in Fig-
ure 2. For temperatures down to ≈ 40 K the static mag-
netic susceptibility varies as expected for the cyclic Fe6
cluster [3,6]. Below ≈ 40 K χ increases when the mag-
netic field is applied perpendicular to c and depends cru-
cially on the strength of the applied magnetic field. When
the magnetic field is applied parallel to c the susceptibil-
ity follows the expected temperature dependence down to
≈ 6 K. At lower temperatures there is a Curie-like increase
of χ which also depends on the strength of the magnetic
field. The inset in Figure 2 shows the field dependence
of the magnetic moment for B⊥c at 3 and 6 K. After
a steep increase in the low field range the magnetic mo-
ment increases nearly linearly with B. The ESR measure-

Table 1. Intra-molecular structural parameters of
Fe6:bicine [7] and Fe6:tea [8]: Fe· · ·Fe distance, inner/outer
�(Fe-O(1)-Fe)/� (Fe-O(2)-Fe) bridging angle, and torsional
angles (compare Fig. 1).

Fe6:bicine Fe6:tea

Fe . . . Fe 3.152 Å 3.201 Å

�(Fe-O(1)-Fe) 103.99◦ 106.19◦

� (Fe-O(2)-Fe) 104.17◦ 105.30◦

� (O(3)-N-Fe-O(1)) 159.3◦ 154.97◦

�(O(3)-N-Fe-O(1)’) −87.2◦ −97.8◦

�(O(3)-N-Fe-O(2)) −104.3◦ −108.0◦

� (O(3)-N-Fe-O(2)’) 87.9◦ 88.4◦

Fig. 2. Magnetic susceptibility of the Fe6:bicine cluster. The
magnetic field is applied parallel (open symbols) and perpen-
dicular to the hexagonal axis (full symbols). Squares: B =
0.1 T, circles: B = 1 T, triangles: B = 5 T. Inset: magnetic
moment B⊥c.

ments were carried out on single crystals with a Bruker
ELEXSYS W-band spectrometer (94 GHz). The spectra
were taken in the temperature range 6–40 K. The hys-
teresis of the superconducting coil of 30 G was corrected.
The crystals (length �0.1 mm) were mounted with vac-
uum grease on a quartz rod so that the angle between c
and B could be varied between 0◦ and 90◦. The W-band
spectra were taken in the field range between 0 and 5 T
in angular steps of 15◦. An overview of the spectra is
given in Figure 3. The observed resonances are generally
weak and at the limit of the experimental sensitivity. The
orientation of the crystal can be deduced from the angular
shift of the strong resonance in the range between 2 and
2.5 T. No ESR signals of the Fe6:bicine cluster could be
observed at 9.5 GHz.

3 Analysis of the experimental results

The static magnetic properties of the cyclic Fe6 clusters
are essentially determined by the isotropic exchange in-
teraction between the FeIII ions Hex, the local anisotropy
of the FeIII ions caused by the ligand configuration
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Fig. 3. ESR spectra at 94 GHz of a single crystal of Fe6:bicine.
The numbers give the angle �(B, c).

Hligand and the intra-molecular dipolar interaction Hdipol.
The Hamiltonian of the Fe6:bicine cluster has to trans-
form like the total symmetric representation of the point
group 3̄ which leads to the following expressions for the
Hamiltonians

Hex = −J

6∑
i=1

sisi+1, s1 = s7 (1a)

Hligand = d

6∑
i=1

(
(sz

i )
2 − 1

3
(si)2

)
(1b)

and
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1
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3
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r3
ij
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3
sisj

)
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Only the secular parts of Hligand and Hdipol are invari-
ant with respect to the 3̄ axis and contribute therefore to
the Hamiltonian of the spin cluster. The angle Θij equals
90◦ for all vectors rij , since the FeIII ions are arranged
in a plane perpendicular to the quantization axis z(z||c).
The g-factor of the FeIII ion is nearly isotropic. For the re-
lated system Fe6:tea it was shown by ESR at 9.5 GHz that
the deviation from 2 is smaller than 10−3 [6]. Therefore
g = 2 will be assumed in the following. The parameter d

Fig. 4. The lowest energy levels of the Hamiltonian H = Hex+
Hligand.

describing the on-site anisotropy of the FeIII ion equals
the dzz(i) component of the corresponding quadrupolar
tensor. Hamiltonian equation (1b) yields therefore no in-
formation about the orientation of the local anisotropy
axes of the FeIII ions.

The symmetry properties and energy spectrum of
Hamiltonian equation (1) Hex + Hligand + Hdipol was dis-
cussed several times e.g. [6,9]. Hamiltonian equation (1) is
invariant under rotation of the coordinate system around z
that is, Hamiltonian equation (1) commutes with Sz =∑

sz
i and the M quantum number of the total spin is

a good quantum number. Hamiltonian equation (1) is
also invariant under cyclic permutations of the indices so
that the eigenstates of equation (1) transform according
to the irreducible representations Γt(t = 1, 2, ...6) of the
group 6 [10]. The total spin states S are mixed by the
anisotropic Hamiltonian equations (1b and c), so that S
is not a good quantum number.

Exploiting these symmetries the Hamiltonian equa-
tion (1) reduces to matrices with the dimensions up to
(depending on M) 721 and 724 for t = 2, 3, 5, 6 and 1,
4, respectively. The matrices can be calculated with the
standard tensor-operator techniques [11]. Figure 4 shows
the lowest energy levels of Hamiltonian H = Hex+Hligand.
The eigenstates are characterized by the symmetry label
Γt, the S quantum number of the most important con-
tribution to the eigenstate and the M quantum number.
The degeneracy of the eigenstates of Hex is partially re-
moved by Hligand. Negative values of the parameter d for
the on-site anisotropy of the FeIII ion lead to the exper-
imentally observed hard-axis anisotropy of the coupled
spin system. Already small d values induce non-linear level
shifts due to interactions between eigenstates of the same
irreducible representation Γt and the same quantum num-
ber M . Therefore not only the parameter d but also the
exchange constant J is important for the description of
the zero-field splitting.

An external magnetic field which is not applied paral-
lel to z breaks the Sz-symmetry of the Hamiltonian equa-
tion (1) and mixes the M quantum numbers. In order to
analyze the experimental results only the properties of the
lowest eigenstates are important and it is not necessary to
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Fig. 5. Influence of a magnetic field applied perpendicular
to the molecular symmetry axis on the lowest eigenstates of
Hamiltonian equation (1).

diagonalize the total matrix of the Hamiltonian

H = Hex + Hligand + Hdipol + HZee (2)

HZee denotes HZee=gµBB
∑6

i=1 si. The Heisenberg
Hamiltonian Hex can be solved by exploiting the symme-
try properties of the total spin operator S =

∑6
i=1 si [11].

The matrix of the non-Heisenberg Hamiltonian Hligand +
Hdipol + HZee is calculated in a second step with those
eigenfunctions of Hex which contribute to the thermally
populated eigenstates at low temperatures when the
magnetic anisotropy becomes important. In the follow-
ing calculations all eigenstates of Hex up to 9|J | above
the groundstate Γ4(S = 0) are included [12]. Figure 5
shows the influence of the Zeeman Hamiltonian HZee

with B⊥c. Figure 5 is calculated with the parameters
of the Fe6:bicine system g = 2, J/kB = −27.5 K and
d/kB = −0.633 K (see below) up to a field strength of
30 T in order to demonstrate the level crossing of states
with different Γt labels and the anticrossing due to the
Zeeman effect of states with the same Γt labels. The cal-
culation includes the influence of the dipolar interaction
(Hamiltonian Eq. (1c)). Since the anisotropic Hamiltonian
equation (1b, c) induces a mixing of the S states, an inter-
action can be expected between eigenstates which belong
to the same irreducible representation Γt, even when they
are characterized by different S numbers. This is clearly
visible for the interaction between the Γ4(S = 0), M = 0
and the Γ4(S = 2), M = 0 states for B �20 T (the eigen-
states of Hamiltonian Eq. (2) are denoted by their symme-
try labels and the M quantum number at B = 0). Since
the ESR experiments are carried out in a magnetic field
up to 5 T, the influence of the interaction between eigen-
states Γt(S) with different S numbers is small, though not
completely negligible (see below).

3.1 Susceptibility

The magnetic susceptibility of Figure 2 shows that the
Fe6:bicine crystals not only contain the molecular ring

Fig. 6. Analysis of the static susceptibility. a: curve i) and ii)
display the calculated susceptibility with and without the de-
fect contribution, respectively. The anisotropy of the Fe6:bicine
cluster is not included (details see text). b: the calculated sus-
ceptibility for parallel (curve i) and perpendicular field orien-
tation (curve ii) when the anisotropy of the Fe6:bicine cluster
is included (details see text).The symbols are the same as in
Figure 2.

system but in addition some defect species which lead
to an extremely anisotropic and field-dependent low-
temperature susceptibility. All the synthetic attempts
failed to get rid of these defect species [13]. Therefore the
data shown in Figure 2 have to be used in order to es-
timate at least the parameters J and d of the Fe6:bicine
cluster.

The magnetic moment of a molecular system is given
by m = gµB〈∑i si〉 and can be calculated with the
eigenstates of the Hamiltonian equation (1b, 2). The
static magnetic susceptibility is defined by the quotient
χFe6:bicine = M

H of the magnetization M = Nm along the
direction of the applied magnetic field H (N denotes the
number of the magnetic molecules). Curve i) in Figure 6a
shows the susceptibility when only the eigenfunctions of
H=Hex +HZee are used to calculate 〈∑i si〉. The fit of the
maximum yields J/kB=−25.5 ± 0.5 K but the high tem-
perature slope of χ indicates a stronger antiferromagnetic
coupling of the FeIII ions.

In a simple approach it can be assumed that a certain
fraction c of the Fe6:bicine clusters are decomposed into
six independent FeIII complexes so that the susceptibility
can be written as χ = (1− c)χFe6:bicine + 6 · cχS=5/2 + χ0,
with the susceptibility χS=5/2 of a FeIII ion and the
temperature independent diamagnetic core susceptibility
χ0(≈ −10−4 emu/mol). Curve ii) in Figure 6a shows the
fit of the perpendicular susceptibility with B = 0.1 T.
The susceptibility of the Fe6:bicine cluster is again deter-
mined only by the isotropic part χex of Hamiltonian equa-
tion (2) and the parameters are J/kB = −27.5±0.5 K and
c = 1.75%. This result shows that only a comparatively
small fraction of the molecular rings are damaged. The
susceptibility of the defect shifts the temperature of the
maximum at 127 K and can therefore not be neglected
even at high temperatures.

The simple approach fails to describe the perpendicu-
lar susceptibility at B = 5 T and the measurements of the
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parallel susceptibility. Obviously the defect species are not
only simple FeIII complexes [14]. However the anisotropy
and field dependence of the defect susceptibility fades
away with increasing temperature so that the difference
between χ|| and χ⊥ above T ≈ 50 K can be used to esti-
mate the anisotropy of the Fe6:bicine cluster.

The expectation value 〈∑i si〉 has to be calculated
with the eigenfunctions of the Hamiltonian H = Hex +
Hligand +Hdipol +HZee. For the fit of the susceptibility it
is sufficient to diagonalize the matrix of H within the basis
of the eigenstates of Hex up to an energy of ECut = 9|J |
above the groundstate and to approximated the eigen-
states at higher energies by the Hamiltonian H = Hex +
HZee [12]. The accuracy of this approach depends on the
strength of the on-site anisotropy d and the temperature.
The error can be estimated by an extrapolation 1/n → 0
of χ(n) calculated with ECut = n|J |, n = 3, 4, ..., 9. With
the parameters given below the maximal error of about
3% is found in the temperature range around T ≈ 40 K.
The curves i) and ii) in Figure 6b are calculated with the
parameters J/kB = −27.2 K, c = 1.3%, d/kB = −0.56 K
and B|| = B⊥ = 1 T. The curves ii) in Figure 6a and b
are nearly identical. The value of d is not too far from the
ESR result d/kB = −0.633 K (see below).

3.2 ESR

It will be shown in the following that the ESR spectra
at 94 GHz originate from the Γ4(S = 2) and Γ1(S = 3)
eigenstates of the Fe6:bicine cluster.

The description of the zero-field splitting of the Γ4(S =
2) and Γ1(S = 3) eigenstates is possible in terms of an
effective spin Hamiltonian

HS=2 = B
(S=2)
2 (Sz)2 + B

(S=2)
4 (Sz)4 (3a)

and
HS=3 = B

(S=3)
2 (Sz)2 +B

(S=3)
4 (Sz)4 +B

(S=3)
6 (Sz)6, (3b)

within the spin space S = 2 and 3, respectively. Due to
the axial symmetry of Hamiltonian equation (1) there are
no transversal components of the effective spin Hamilto-
nian so that there exist a simple linear relation between
the zero-field splitting ∆

(S)
M = E

(S)
±M − E

(S)
M=0 and the pa-

rameters B
(S)
q of the spin Hamiltonian

B
(S=2)
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B
(S=3)
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540∆
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3
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/360,

(5a)

B
(S=3)
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(
−39∆
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1 + 12∆

(S=3)
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(S=3)
3
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B
(S=3)
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(
15∆
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(S=3)
3
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for S = 3.

According to Figure 4 the zero-field splittings depend
on the parameter d of the on-site anisotropy of the FeIII

ions so that the experimentally determined values of ∆
(S)
M

open a way to test the Hamiltonian of the Fe6:bicine clus-
ter.

As mentioned above the ESR experiments were car-
ried out in magnetic fields up to 5 T. In this field range,
the results of Figure 5 show that the Zeeman effect of
the eigenstates Γ4(S = 2) and Γ1(S = 3) can be mod-
eled in a first order perturbation approach by a Zeeman-
Hamiltonian H(S)

Zeeman = gµBSB acting in the spin space
S = 2 and 3, respectively. The absorption spectrum can be
simulated by means of the eigenfunctions and eigenvalues
of the spin Hamiltonians HS + H(S)

Zeeman. Throughout the
calculations the transition probability is approximated by
a Lorentzian shaped function (the width of the Lorentz
function was ∆B1/2 = 60 mT) multiplied by the transi-
tion matrix element and the thermal occupation difference
of the corresponding energy levels. Thereby the expected
shape and intensity of the resonances can be visualized
although it is not possible to account for the observed
linewidth variations.

The description of the Zeeman effect by a first order
approach has to be checked before it can be used for the
investigation of the experimental spectra. For B||c, this
approach is strictly correct, since there is no level mix-
ing due to HZee. When the magnetic field is not par-
allel to c, the interaction between the Γt(S) eigenstates
can even lead to level anticrossing as is shown in Fig-
ure 5. In order to estimate the influence of this interac-
tion the Zeeman effect was calculated with Hamiltonian
equation (2) (J = −28 K, d = −0.6 K) and the corre-
sponding spin Hamiltonian equation (3) with B ⊥ c for
the Γ4(S = 2) and Γ1(S = 3) eigenstates, i.e. the parame-
ters of Hamiltonian equation (3) are adjusted so that the
zero-field splitting ∆

(S)
M determined by Hamiltonian equa-

tions (2) and (3) are the same. At 5 T the difference be-
tween the Zeeman splittings calculated with Hamiltonian
equations (2) and (3) is smaller than ∆E/µB � 153 mT
(� 1.11% of the Zeeman splitting between neighboring
energy levels) and ∆E/µB � 21 mT (� 0.21%) for the
Γ4(S = 2) and Γ1(S = 3) eigenstates, respectively. Al-
though the effect is small, it can be expected that the
ESR resonances may be shifted in the range of several 10
mT due to the field induced interaction between the Γt(S)
eigenstates. The effective Zeeman operator H(S)

Zeeman can-
not account for this effect. The analysis of the spectra by
means of Hamiltonian equation (3) should therefore be ap-
plied to resonances in low magnetic fields (� 2T) and/or
to spectra with small angles between B and c.

In an ideal situation the spectra obtained for B||c dis-
play more or less directly the zero-field splittings ∆

(S)
M

(compare Ref. [6b]). In the case of Fe6:bicine the spectra
lines are weak and noisy, so that the information has to be
obtained by a combined analysis of the spectra for various
field orientations. The analysis is based on the spectra
�(B, c) = 83◦/82◦ (Fig. 7), �(B, c) = 7◦/8◦ (Fig. 8),
�(B, c) = 22◦/23◦ (Fig. 9) and �(B, c) = 52◦/53◦
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Fig. 7. Analysis of the spectrum �(B, c) = 83◦. Upper part:
Zeeman splitting of the Γ4(S = 2) eigenstates and the sim-
ulated ESR spectrum. Lower part: Zeeman splitting of the
Γ1(S = 3) eigenstates and the simulated ESR spectrum. Cen-
tral part: measured ESR spectrum at T = 20 K.

(Fig. 10). The detailed comparison between the experi-
mentally determined and simulated spectra is only shown
for one orientation of the magnetic field, respectively. The
remaining spectra provide no additional information. The
experimentally determined spectra lines are denoted by
small Latin letters (i), (ii), ..., the simulated lines of the
Γ4(S = 2) eigenstates by small Latin letters (a), (b)...
and the lines of the Γ1(S = 3) eigenstates by small Greek
letters (α), (β)... .

3.2.1 The zero-field splitting of the Γ4(S = 2) eigenstates

The analysis of the Γ4(S = 2) eigenstates starts with the
spectrum �(c, B) = 83◦ shown in Figure 7. The resonance
(a) is forbidden when the field is applied perpendicular

Fig. 8. Analysis of the spectrum �(B, c) = 7◦. Upper part:
Zeeman splitting of the Γ4(S = 2) eigenstates and the sim-
ulated ESR spectrum. Lower part: Zeeman splitting of the
Γ1(S = 3) eigenstates and the simulated ESR spectrum. Cen-
tral part: measured ESR spectrum at T = 20 K. Inset: details
in the wing of line (iv).

to c. Due to the deviation from the perpendicular field
orientation it can be observed and it is assumed that the
resonance (ii) belongs to the Γ4(S = 2) eigenstates. Since
resonance (a) is sharp and does not depend strongly on the
crystal orientation it fixes accurately the energy difference
∆

(S=2)
M=1 .

Once the values of ∆
(S=2)
M=1 is fixed the resonances (b)

and (c) are essentially determined although there is a small
influence of the excited M = ±2 states. The spectrum
�(c, B) = 7◦ (Fig. 8) confirms the ∆

(S=2)
M=1 value. The res-

onances (c) and (e) are determined by ∆
(S=2)
M=1 . The weak

transition (b) in the spectrum �(c, B) = 7◦ is assigned to
line (iii) which determines the energy difference ∆

(S=2)
M=2 .



B. Pilawa et al.: Magnetic properties of Fe6: bicine 327

Fig. 9. Analysis of the spectrum �(B, c) = 23◦. Upper part:
simulated ESR spectrum of the Γ4(S = 2) eigenstates. Lower
part: simulated ESR spectrum of the Γ1(S = 3) eigenstates.
Central part: measured ESR spectrum at T = 20 K.

Fig. 10. Analysis of the spectrum �(B, c) = 52◦. Upper part:
Zeeman splitting of the Γ4(S = 2) eigenstates and simulated
ESR spectrum. Lower part: simulated ESR spectrum of the
Γ1(S = 3) eigenstates. Central part: measured ESR spectrum
at T = 20 K.

Table 2. The experimentally determined zero-field splitting ∆
(S)
M and the resulting anisotropy parameter d of the FeIII ions

(compare Fig. 11). *) the experimentally determined splitting ∆
(S=3)
M=1 is always larger than the calculated value (compare

Fig. 11).

experiment d (without Hdipol) d (with Hdipol)

Γ4(S = 2)

∆
(S=2)
M=1 /kB 1.317±0.013 K -*) −0.631±0.028

∆
(S=2)
M=2 /kB 9.924±0.034 K −0.747±0.003 −0.641±0.004

Γ1(S = 3)

∆
(S=3)
M=1 /kB 1.147 ± 0.034 K −0.782 ± 0.025 −0.660±0.025

∆
(S=3)
M=2 − ∆

(S=3)
M=1 /kB 3.296 ± 0.017 K −0.748±0.005 −0.629±0.004

∆
(S=3)
M=3 − ∆

(S=3)
M=2 /kB 6.203±0.020 K −0.745±0.002 −0.624±0.002

The correctness of ∆
(S=2)
M=2 is confirmed by the spectra with

�(c, B) = 23◦ (Fig. 9) and �(c, B) = 52◦ (Fig. 10).

The transition (d) and line (vii) in the spectrum
�(c, B) = 7◦ coincide accidentally. The position of line
(vii) does not depend on the crystal orientation, whereas
transition (d) is strongly shifted. Moreover line (vii) is the
only one which can be observed even at the lowest mea-
sured temperature of 6 K. It is very likely that line (vii)
does not originate from the Fe6:bicine cluster.

The zero-field splitting of the Γ4(S = 2) eigenstates
∆

(S=2)
M=1 and ∆

(S=2)
M=2 are given in Table 2. The parame-

ters of the effective spin Hamiltonian equation (3a) are
B

(S=2)
2 /kB = 0.93 ± 0.02 K and B

(S=2)
4 /kB = 0.388 ±

0.007 K. The error results from the uncertainty of the ori-
entation (±1◦) and the limitations of the first order calcu-
lation of the Zeeman effect, which permits only the predic-
tion of a resonance field strength within a range of up to
±50 mT. The average difference between the observed and
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calculated resonance field strengths is ±35 mT (for details
of the fits see [15]). The large value of B

(S=2)
4 confirms

that the fourth order contribution to the effective spin
Hamiltonian cannot be neglected. The parameters of the
Fe6:tea cluster are in the same range B

(S=2)
2 /kB = 1.23 K

and B
(S=2)
4 /kB = 0.31 [6b].

3.2.2 The zero-field splitting of the Γ4(S = 3) eigenstates

The three energy differences ∆
(S=3)
M=1 , ∆

(S=3)
M=2 , and ∆

(S=3)
M=3

have to be fixed for the Γ1(S = 3) eigenstates. The en-
ergy difference ∆

(S=3)
M=3 − ∆

(S=3)
M=2 = E

(S=3)
M=±3 − E

(S=3)
M=±2 is

well determined by the observed resonances. The transi-
tion (β) is attributed to resonance (ii) in the �(c, B) = 7◦
spectrum (Fig. 8). As a consequence of this assignment the
lines (iii), (v) and (vi) in the spectrum with �(c, B) = 23◦
(Fig. 9) can be attributed to the Γ1(S = 3) eigenstates.
The simulation of these resonances depends sensitively on
the energy difference E

(S=3)
M=±3 − E

(S=3)
M=±2 and confirms the

assignment.
The energy difference ∆

(S=3)
M=2 − ∆

(S=3)
M=1 = E

(S=3)
M=±2 −

E
(S=3)
M=±1 can be estimated from the spectrum with

�(c, B) = 83◦ (Fig. 7, lines i, v, vi). However the reso-
nance positions depend not very sensitively on ES=3

M=±2 −
E

(S=3)
M=±1. In the spectrum �(c, B) = 23◦ (Fig. 9) the lines

(i) and (ii) can be attributed to the Γ1(S = 3) eigenstates.
The resonance positions of these lines depend sensitively
on E

(S=3)
M=±2 − E

(S=3)
M=±1 and allow an accurate determina-

tion of the zero-field splitting
(
E

(S=3)
M=±2 − E

(S=3)
M=±1

)
/kB =

3.296±0.017 K. The qualitative comparison with the spec-
trum �(c, B) = 52◦ in Figure 10 confirms the value of the
energy difference E

(S=3)
M=±2 − E

(S=3)
M=±1.

In the spectrum with �(c, B) = 7◦ the line (i) is very
close to the transition (α) which fixes E

(S=3)
M=±2 − E

(S=3)
M=±1.

The fit of this line results in a slightly smaller zero-field
splitting of

(
E

(S=3)
M=±2 − E

(S=3)
M=±1

)
/kB = 3.232 ± 0.014 K,

which however cannot describe the spectra with �(c, B) =
23◦ and �(c, B) = 52◦. Line (i) probably does not origi-
nate from the Γ1(S = 3) eigenstates.

The energy difference ∆
(S=3)
M=1 = E

(S=3)
M=±1 −E

(S=3)
M=0 can-

not be determined easily since the corresponding transi-
tions overlap with lines of the Γ4(S = 2) spectrum (see
Figs. 7 and 8). The small resonance (v) in the wing of the
strong line (iv) in the �(c, B) = 7◦ spectrum might be
caused by transition (γ) which depends on ∆

(S=3)
M=1 . As a

consequence of this assignment there is a weak transition
(δ) which results from the forbidden M = −3 ↔ M = +1
transition. This transition becomes visible due to mix-
ing of the M = 0,−3 states in the neighborhood of the
anticrossing of these states (see Fig. 7, the anticrossing
effect is however too small to be resolved in Fig. 8).
Transition (δ) is attributed to the weak line (vi) which
confirms that the energy differences ∆

(S=3)
M=3 − ∆

(S=3)
M=2 =

Fig. 11. Relation between the zero-field splitting and the
anisotropic interactions of the Fe6:bicine cluster. Broken line:
zero-field splitting calculated with H = Hex + Hligand. Solid
line: zero-field splitting calculated with H = Hex + Hligand +
Hdipol (J/kB = −27.5 K). Marked curve (∗) calculated with
H = Hex + Hligand + Hdipol and J/kB = −28 K.

E
(S=3)
M=±3 − E

(S=3)
M=±2, ∆

(S=3)
M=2 − ∆

(S=3)
M=1 = E

(S=3)
M=±2 − E

(S=3)
M=±1

and ∆
(S=3)
M=1 = E

(S=3)
M=±1 − E

(S=3)
M=0 are correctly determined

(see inset of Fig. 8). The exact value of ∆
(S=3)
M=1 might

be distorted due to the neighborhood of line (v) and the
strong line (iv).

The zero-field splitting of the Γ1(S = 3) eigen-
states ∆

(S=3)
M=1 , ∆

(S=3)
M=2 − ∆

(S=3)
M=1 and ∆

(S=3)
M=3 − ∆

(S=3)
M=2

are given in Table 2. The parameters of the effective
spin Hamiltonian equation (3b) become B

(S=3)
2 /kB =

1.295 ± 0.054 K, B
(S=3)
4 /kB = −0.158 ± 0.022 K and

B
(S=3)
6 /kB = −0.010 ± 0.002 K. Although the parame-

ters B
(S=3)
4 and B

(S=3)
6 are small compared with B

(S=3)
2 ,

they are considerably larger than those of the Fe6:tea clus-
ter (B(S=3)

2 /kB = 1.08 K, B
(S=3)
4 /kB = −0.28 mK and

B
(S=3)
6 /kB = 0.1348 mK [6b]).

4 Discussion

The zero-field splittings ∆
(S)
M of the Γt(S) eigenstates are

determined by the microscopic spin Hamiltonian equa-
tion (1) of the Fe6:bicine cluster (compare Fig. 4). Fig-
ure 11 shows the variation of the zero-field splittings ∆

(S)
M

as a function of the component d = dzz(i) of the quadrupo-
lar tensor describing the on-site anisotropy of the FeIII ion
for the Γ4(S = 2) and Γ1(S = 3) eigenstates. The calcu-
lation is carried out with and without the dipolar interac-
tion. The influence of the isotropic exchange interaction on
the zero-field splitting is (aside from ∆

(S=2)
M=1 of Γ4(S = 2))

negligible when J is varied in the range between −27 and
−28 K. Figure 11 is calculated with J/kB = −27.5 K. The
nonlinear behavior of the splitting ∆

(S=2)
M=1 of Γ4(S = 2)

is caused by the interaction between Γ4(S = 2) and the
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groundstate Γ4(S = 0) (compare Fig. 4). Due to this in-
teraction ∆

(S=2)
M=1 of Γ4(S = 2) also depends on J . As an

example, the marked line in Figure 11 is calculated with
J/kB = −28 K (and the dipolar interaction included).

d can be determined by means of the experimental
zero-field splittings ∆

(S=2)
M=1 (dotted lines in Fig. 11). The

resulting d-values are given in Table 2. For the ∆
(S=2 or 3)
M=1

splitting the experimental error results in a particularly
large error of d due to the nonlinear behavior (Γ4(S = 2))
and the small slope (Γ1(S = 3)) of the ∆

(S)
M=1(d) curves.

For ∆
(S=2)
M=1 of (Γ4(S = 2)) the error of d has to be en-

hanced due to the uncertainty of J .

When the dipolar interaction is neglected
∆

(S=2)
M=2 ,∆(S=3)

M=2 − ∆
(S=3)
M=1 and ∆

(S=3)
M=3 − ∆

(S=3)
M=2 yield

the consistent value d/kB = −0.747 ± 0.002 K. When
the dipolar interaction is included in the descrip-
tion of the Γ4(S = 2) eigenstates, ∆

(S=2)
M=2 yields

d/kB = −0.641 ± 0.004 K and the d determined by
∆

(S=2)
M=1 is compatible with this value. As is shown in

Figure 11 this result confirms the exchange constant of
J/kB = −27.5 K. The energy differences ∆

(S=3)
M=2 −∆

(S=3)
M=1

and ∆
(S=3)
M=3 −∆

(S=3)
M=2 of the Γ1(S = 3) eigenstates demand

the somewhat larger value d/kB = −0.625 ± 0.004 K. d

determined by ∆
(S=3)
M=1 is not compatible with this value.

The estimation of the experimental error of ∆
(S=3)
M=1 is

probably too small (compare Sect. 3.2.2). The small
difference between the d values of the Γ4(S = 2) and
the Γ1(S = 3) eigenstates might indicate that aside
from the quadrupolar on-site anisotropy of the FeIII

ion and the dipolar interactions there are additional
anisotropic interactions (anisotropic exchange or higher
order components of the on-site anisotropy) which
contribute to the zero-field splitting. Neglecting these
additional anisotropic interactions, the average d value of
the FeIII ions is d/kB = −0.633± 0.008 K.

The values J and d of the Fe6:bicine ring can be used to
predict the spectra of other spin states. Especially for the
first excited Γ1(S = 1) eigenstates a zero-field splitting of
∆

(S=1)
M=1 /kB = 12.32± 0.14K can be expected according to

the above results. The M = 0 ↔ −1 transition with B||c
should be observed at a field strengths of 9.166± 0.110 T,
which is well above the maximal magnetic field of our
spectrometer (B < 6 T). When the magnetic field is not
applied parallel c, the forbidden transition M = +1 ↔ −1
is of low absorption intensity and the corresponding field
strength depends critically on the orientation of the crys-
tal within the magnetic field. With the available spectra
the M = +1 ↔ −1 transition cannot be traced. It can
be definitively concluded that the strong resonances (i)
and (vii) in the spectra �(c, B) = 7◦ and 8◦ (see Fig. 8)
cannot be assigned to the Γ1(S = 1) eigenstates. Prob-
ably these resonances originate from the unknown defect
species observed by the susceptibility measurements. This
is confirmed by the fact that both these resonances and
the defect susceptibility are very anisotropic (the lines (i)

and (vii) can only be observed, when B is applied approx-
imately parallel to c).

The parameters of the related Fe6:tea cluster are
J/kB = −31.5 K and d/kB = −0.603±0.008 K. The local
anisotropy and the dipolar interaction are weaker in the
Fe6:tea cluster than in the Fe6:bicine cluster, whereas the
exchange coupling of the FeIII is stronger for Fe6:tea than
for Fe6:bicine. Consequently, the interaction between the
Γt eigenstates due to the anisotropic interactions is more
important for the Fe6:bicine system than for the Fe6:tea
system which leads to the experimentally observed en-
hancement of the higher order terms B

(S)
q in the effective

spin Hamiltonian equation (3).
The exchange constant J varies for the various Fe6:tea

clusters with the �(Fe-O(1)-Fe) angle α1 according to
J [K] = −2.91α1[◦] + 276 [4b]. The formula predicts for
the Fe6:bicine cluster with α1 = 104◦J/kB = −26.6 K and
with α1 = 106.2◦ for the Fe6:tea cluster J/kB = −33.0 K
which is very close to the experimental values. On the
other hand the on-site anisotropy d can be correlated
with the torsional angle ϕ = �(O(3)-N-Fe-O(1)′) which
is the most sensitive parameter describing the coordina-
tion environment of the FeIII ion [4b]. Comparing Table 1
the rule that |d| decreases when |ϕ| increases is indeed
confirmed by the comparison between the Fe6:bicine and
Fe6:tea cluster.

5 Conclusion

The study of the magnetic and electronic properties of the
cyclic spincluster Fe6:bicine shows how the magnetic on-
site anisotropy and the interaction between the FeIII ions
is influenced by a tiny modification of the coordinating
and bridging ligand. The results confirm the magneto-
structural correlation known for the tea ligand. High-
frequency ESR provides insight into the structure of the
excited spin states and reveals not only the importance of
the fourth- and sixth-order spin operators in the descrip-
tion of the zero-field splitting but also the subtle effects of
level crossings and mixing of spin states.

The authors thank Prof. E. Dormann for helpful discussions
and the DFG for financial support under project PI336/2-1,2.
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